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Warning!

◦ WebSEM is free.

◦ If you are not comfortable with this, we’d be happy to charge
you to make you feel better.

◦ WebSEM is tested but comes without warranty.

◦ This talk is suspicious of self-promotion of WebSEM.
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Outline

◦ Motivation of non-normal and missing data analysis

◦ An example on robust Cronbach’s alpha and McDonald’s omega

◦ Technical backgrounds for robust SEM

◦ WebSEM through examples

. What is WebSEM?

. Examples

◦ Q & A
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Motivation – Non-normal data

◦ Practical data are often not normally distributed.

◦ Micceri, T. (1989). The Unicorn, The Normal Curve, and
Other Improbable Creatures. Psychological Bulletin, 105, 156–
166.

. 440 large-sample achievement and psychometric mea-
sures and all to be significantly nonnormal at α = 0.01.

◦ Common sources

. Longer or shorter tails

. Skewness

. Outlying observations
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Influence of non-normal data

◦ Replication

◦ Type of data

. Normal

. Non-normal but satisfies certain requirements such as
elliptical distribution or existence of certain moments

. Non-normal data with outlying observations

◦ Evaluation criterion

. Bias

. Efficiency

. Test statistics

8



◦ Methods

. Normal distribution based methods (NML)

. Distribution free methods (WLS, robust s.e.)

. Robust methods (WebSEM)

◦ Comparison under asymptotic theory (large sample)

Normal Non-normal Outlying
θ s.e. χ2 θ s.e. χ2 θ s.e. χ2

NML " " " " % % % % %

Distribution free " " " " " " % % %

Robust " " " " " " " " "

Note. " OK %incorrect
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Motivation – Missing data

◦ Practical data often include missing data.

◦ Variables used in the current model - Y = (y1, . . . , yp)

◦ Missing data indicating variables - M = (m1, . . . ,mp)

◦ Auxiliary variables collected in a study not directly used in the
current model - A = (A1, . . . , As)

y1 . . . yp m1 . . . mp A1 . . . As

1 O O O 0 0 0 O O O
2 - O O 1 0 0 O O O
3 O O O 0 0 0 O - O
... O - - 0 1 1 - O O
N - - O 1 1 0 O O O
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Missing mechanisms

◦ MCAR
Pr(M |Yobs, Ymiss, A,θ) = Pr(M |θ)

. θ represents unknown model parameters.

. Missing data Ymiss are a simple random sample of Y .

. The missingness is not related to Dobs or A.

◦ MAR
Pr(M |Yobs, Ymiss, A,θ) = Pr(M |Yobs,θ)

. The probability that a datum is missing is related to the
data actually observed Dobs but not to the missing data
Dmiss or A.
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◦ MNAR

. The missing probability of a datum is related to the miss-
ing data Dmiss or A, and

. A are not included in the data analysis.

◦ Missing data methods and techniques in general assume that
missing data are MCAR or MAR.

◦ If missingness is only related to A and A are observed and
included in the data analysis, then the overall missing mecha-
nism becomes MAR.
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Methods dealing with missing data

◦ Listwise deletion

◦ Pairwise deletion

◦ Multiple imputation

◦ (Full information) Maximum likelihood method

MCAR MAR MNAR MNAR-A
Listwise " % % -
Pairwise " % % -

MI " " % "

FIML " " % "
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Robust methods and WebSEM

◦ A robust procedure is developed to deal with both non-normal
data and missing data simultaneously (e.g., Tong, Zhang, &
Yuan, 2013; Yuan, 2013; Yuan, Tong, & Zhang, 2013; Yuan &
Zhang, 2012a, 2012b; Zhang & Wang, 2012; Zhang & Yuan,
2013).

◦ The online software WebSEM is used to carry out the robust
analysis (https://websem.psychstat.org).
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Robust methods on reliability coefficients

◦ Given a test with p items with population mean µ and co-
variance matrix Σ = (σij). The sample covariance matrix is
S = (sij).

◦ Cronbach’s alpha

α̂ =
p

p− 1

(
1−

∑p
i=1 sii∑p

i=1

∑p
j=1 sij

)
.

◦ McDonald’s omega

. Omega is defined on the factor model

yij = µj + λjfi + eij

with V ar(eij) = ψj.
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.

ω̂ =
(
∑p

k=1 λ̂j)
2

(
∑p

k=1 λ̂j)
2 + (

∑p
k=1 ψ̂j)

.

◦ Alpha and omega are the same under tau-equivalent (McDon-
ald, 1999).

◦ For non-tau-equivalent models, alpha and omega are often
similar (e.g., Maydeu-Olivares et al., 2010).

◦ Both of them are influenced by outlying observations because
the non-robustness of sample covariance matrix.
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Influence of outlying observations on alpha
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y1

y 2 A

B

C

D

None .95   BC   .91
A    .75   BD   .69
B    .75   CD   .89
C    .98   ABC  .83
D    .78   ABD  .51
AB   .53   ACD  .81
AC   .91   BCD  .84
AD   .63   ABCD .76
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Types of outlying observations

◦ Invalid outlying observations

. Erroneous observations that do not represent the under-
lying phenomena to be measured.

. Data recording and input error is the most common
cause.

◦ Valid outlying observations

. Appear to be different from the majority of the data but
truly represent the underlying phenomena.

. Leverage observations

− C has extremely large scores on both y1 and y2. The
scores are extreme in the same direction.

18



− Common factor score shows extreme values.
− Good outlying observations - enlarge reliability and

reduce s.e.

. Outliers

− Show extremely values on certain items such as A
and B.

− Uniqueness factor scores show extreme values.
− Bad outlying observations - reduce reliability and

enlarge s.e..
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Influences of outlying observations and missing data

◦ Data generation

. 1000 sets of normal data on 6 items with N=100

. Outlying observations
− Outliers are generated by adding 4 from the first 3

items and subtracting 4 for the last three items for
observations from 96 to 100.

− Leverage observations are generated by subtracting
on all items for observations from 96 to 100.

. Missing data
− Complete for the 1st and 4th item.
− Missingness of the 2nd and 3rd items is related to

the 4th item and missingness of the 5nd and 6rd
items is related to the 1th item.
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Results for outlying observations

◦ Population alpha and omega = 0.9.

ROBUST ALPHA 11

Table 1
Average alpha and omega and their standard errors and 95% confidence intervals from the
1000 sets of simulated data under normal data (Normal), data with outliers (Outlier), and
data with leverage observations (Leverage). The population alpha and omega are both 0.9
for the tau-equivalent model and for the non-tau-equivalent model, the population alpha is
0.777 and the population omega is 0.789.

alpha omega
ϕ Est s.e. 95% CI Est s.e. 95% CI

ta
u-

eq
ui

va
le

nt

Normal
0 .898 .015 .868 .928 .899 .016 .869 .929

0.05 .898 .016 .867 .929 .899 .016 .868 .930
0.1 .898 .016 .866 .930 .899 .016 .867 .931

outlier
0 .663 .109 .450 .875 .600 .101 .402 .798

0.05 .863 .047 .770 .955 .862 .049 .766 .958
0.1 .872 .033 .808 .936 .873 .033 .808 .938

Leverage
0 .972 .009 .954 .989 .972 .009 .954 .990

0.05 .954 .023 .909 1.000 .955 .023 .909 1.000
0.1 .948 .022 .905 .991 .948 .022 .905 .991

no
ta

u-
eq

ui
va

le
nt Normal

0 .772 .034 .704 .839 .786 .033 .722 .850
0.05 .772 .035 .702 .841 .786 .034 .720 .852
0.1 .772 .036 .701 .842 .786 .034 .719 .853

outlier
0 .437 .161 .121 .752 .456 .112 .236 .676

0.05 .691 .100 .494 .887 .691 .102 .491 .892
0.1 .712 .073 .569 .854 .716 .075 .570 .863

Leverage
0 .952 .016 .920 .984 .953 .016 .921 .984

0.05 .902 .056 .791 1.000 .904 .054 .798 1.000
0.1 .886 .052 .784 .988 .889 .050 .792 .986

Note. Est: estimate; s.e.: Standard error; CI: confidence interval.

Conclusion Remarks. This simulation example shows that there is not larger dif-
ference between alpha and omega even for the non-tau-equivalent normal data. Out-
liers cause underestimation while leverage observations cause overestimation of alpha and
omega. Our robust procedure can effectively control the influence of outlying observations
although the procedure seems to work better for outliers than leverage observations.

Example 2: Influence of Missing Data

This example aims to demonstrate the influence of missing data on alpha and omega
through simulated data. The complete normal data are generated from the tau-equivalent
model and the non-tau-equivalent model in Example 1. The missing data are generated in
the following way. First, there are no missing data in y1 and y4. Second, missing data in
y5 and y6 are related to y1. Specifically, an observation for y5 is missing if y1 ≤ q0.1(y1)
and an observation for y6 is missing if q0.1(y1) < y1 ≤ q0.2(y1) where qp(y) is the 100pth
percentile of y. Third, missing data in y2 and y3 are related to y4 so that an observation for y2
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Results for missing data

◦ Population alpha and omega = 0.9.

ROBUST ALPHA 12

Table 2
Average alpha and omega and their standard errors and 95% confidence intervals from
the 1000 sets of simulated data under listwise deletion (Deletion) and maximum likelihood
method (ML). The population alpha and omega are both 0.9 for the tau-equivalent model
and for the non-tau-equivalent model, the population alpha is 0.777 and the population
omega is 0.789.

alpha omega
ϕ Est s.e. CI Est s.e. CI

ta
u-

eq
ui

va
le

nt

Deletion
0 .804 .036 .733 .875 .812 .037 .740 .884

0.05 .804 .038 .729 .879 .812 .039 .736 .888
0.1 .804 .039 .727 .880 .812 .039 .735 .889

ML
0 .898 .016 .867 .929 .899 .016 .868 .931

0.05 .898 .016 .866 .930 .899 .016 .867 .932
0.1 .898 .017 .865 .931 .899 .017 .866 .932

no
n-

ta
u-

eq
ui

va
le

nt

Deletion
0 .670 .062 .549 .792 .695 .059 .579 .811

0.05 .670 .065 .542 .798 .694 .062 .572 .816
0.1 .669 .067 .538 .800 .693 .063 .569 .818

ML
0 .772 .036 .701 .843 .787 .034 .721 .854

0.05 .772 .037 .698 .845 .787 .035 .718 .856
0.1 .771 .038 .697 .846 .787 .036 .717 .857

is missing if y4 ≥ q0.9(y1) and an observation for y3 is missing if q0.8(y1) ≤ y1 < q0.2(y1).
The generated data are missing at random.

Both alpha and omega are estimated from the generated data with missing values
using either listwise deletion where all cases with missing values are removed and the
robust procedure developed in this paper. Table 2 presents the results as the average of the
estimated alpha and omega and their standard errors and 95% confidence intervals from the
1000 sets of simulated data.

First, it is clear that the estimated alpha and omega underestimate their population
values in the listwise deletion method for both tau-equivalent and non-tau-equivalent data.
Second, the estimated alpha and omega from our robust method using ML are very close to
their population values. Third, it is evident that the standard errors of the estimated alpha
and omega from the robust method are much smaller than those based on listwise deletion.
This is because the robust method utilizes all the information in the data. Fourth, as for
the complete data analysis, the downweigthing does not pose big influence in the estimated
alpha and omega for the normal data, .

Example 3

In this example, we illustrate the use of the robust alpha in practice. The use of omega
can be applied in the same fashion. The data used here consist of 21 cognitive tests selected
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Why robust methods work?

◦ Smaller weights are given to outlying observations.
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Robust SEM: Settings

◦ Let y represents a population of p random variables with
E(y) = µ and Cov(y) = Σ. A sample yi, i = 1, 2, . . . , N,
from y with missing values is available.

◦ The vector u represents q − p auxiliary variables with associ-
ated sample realization ui, i = 1, 2, . . . , N .

◦ Let x represents all the variables that we are interested and
those that are auxiliary (not of substantial interest). Then,
x = (y′,u′)′ with E(x) = ν and Cov(x) = V.

◦ Due to missing values, the vector xi = (y′i,u
′
i)
′ only con-

tains qi marginal observations of x. The mean vector and
covariance matrix corresponding to the observations in xi are
denoted as νi and Vi, respectively.
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Robust SEM: Step 1. Estimate the robust mean and co-
variance matrix

◦ Estimated through solving the following equations

N∑
i=1

ωi1 (di)
∂ν

′
i

∂ν
V−1i (xi − νi) = 0

N∑
i=1

∂vec′ (Vi)

∂v
Wivec

[
ωi2 (di) (xi − νi) (xi − νi)

′
− ωi3 (di)Vi

]
= 0

◦ di is the Mahalanobis distance (M-distance), defined by

d2i = d2(xi,νi,Vi) = (xi − νi)
′
V−1i (xi − νi) ,

ωi1 (di), ωi2 (di) and ωi3 (di) are non-increasing weight func-
tions of di.
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◦ The tuning parameter ϕ, 0 < ϕ < 1. It is also the down-
weighting rate, balancing the estimates’ efficiency and protec-
tion against data contamination.

◦ The value of ρi is the (1− ϕ) quantile corresponding to the
chi-distribution with qi degrees of freedom, χqi . The Huber-
type weight functions with missing data are given by

ωi1 (di) =

{
1, if di ≤ ρi

ρi/di, if di > ρi
,

ωi2 (di) = [ωi1 (di)]
2 /κi,

ωi3 (di) = 1,

where κi is a constant defined by E
[
χ2
qi
ω2
i1

(
χ2
qi

)
/κi
]
= qi.
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◦ For complete data,

µ̂ =
1∑n

i=1w1(di)

n∑
i=1

w1(di)

Σ̂ =
1

n

n∑
i=1

w2(di)(yi − µ̂)(yi − µ̂)′
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Robust SEM: Step 2. Fit SEM

◦ Fit µ̂ and Σ̂ by any structural model. Let µ (θ) and Σ (θ) be
the structural model satisfying µ = µ (θ) and Σ = Σ (θ),
where θ represents all the parameters in the model. The
estimates θ̂ are obtained by minimizing

FML (θ) = [µ̂− µ (θ)]
′
Σ−1 (θ) [µ̂− µ (θ)] + tr

[
Σ̂Σ−1 (θ)

]
.

−log
∣∣∣Σ̂Σ−1 (θ)

∣∣∣− p
◦ Robust standard errors can be obtained.

Ω̂ =
(
ˆ̇δ

′
Ŵδ

ˆ̇δ
)−1 (ˆ̇δ′

ŴδΓ̂Ŵδ
ˆ̇δ
)(

ˆ̇δ
′
Ŵδ

ˆ̇δ
)−1

◦ Robust test statistics
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. Regular χ2 statistic TML

TML = (N − 1) · FML

(
θ̂
)
∼ χ2

df

. Mean corrected TRML

TRML = m̂TML ∼ χ2
df

. Mean and variance corrected TAML

TAML = m̂1TML ∼ χ2
m2

. Corrected RADF (CRADF) statistic

TCRADF =
TRADF

1 + r′Q̂r
∼ χ2

df

. Residual-based F -statistic, TRF

TRF =
(N − df)TRADF

(N − 1)df
∼ Fdf,(N−df)
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An example

◦ Longitudinal data from the National Longitudinal Survey of
Youth 1997 Cohort (NLSY97) data on Peabody Individual
Achievement Test (PIAT) mathematics test scores.

◦ N=399 school children are measured yearly from 1997 to 2000.

Year NC Mean SD Missing rate
1997 375 61.160 15.887 6.015%
1998 377 63.271 17.219 5.514%
1999 357 67.557 16.649 10.526%
2000 350 69.689 17.605 12.281%

Family income 234 17.473 14.844 41.353%
Father’s Education 275 12.244 2.860 31.078%
Mother’s education 362 12.017 2.615 9.273%
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◦ Plot of the data
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A growth curve model
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Results

◦ Fit statistics

2-stage NML (ϕ = 0%) 2-stage Robust (ϕ = 10%)
statistic p-value statistic p-value

TML 20.282 .001 12.386 .030
TRML 14.124 .015 9.181 .102
TAML 11.448 .023 8.179 .111
TCRADF 11.672 .040 7.948 .159
TRF 2.381 .038 1.606 .157
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◦ Parameter estimates and standard errors

Robust (ϕ = .1) NML
θ θ̂ SE z θ̂ SE z
τ1 60.865 0.784 77.622 60.645 0.790 76.72
τ2 3.177 0.251 12.637 3.1 0.272 11.404
φ11 174.45 19.254 9.060 177.49 24.59 7.218
φ21 -6.290 4.904 -1.283 -4.938 7.644 -0.644
φ22 6.791 2.746 2.473 6.994 4 1.748
ψ11 62.406 13.87 4.499 87.576 25.896 3.382
ψ22 77.177 9.105 8.476 103.477 14.275 7.249
ψ33 73.794 9.818 7.516 90.147 14.391 6.264
ψ44 72.463 17.173 4.22 109.889 27.734 3.962
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◦ The path diagram
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WebSEM

◦ Integration of R, LATEX, PHP, Javascript, etc to conduct SEM
analysis online.

◦ SPSS-like interface for typical data analysis.

◦ AMOS-like interface with R robust SEM support.

◦ Accessible through a web browser.

◦ More suitable for big data.

◦ The essential features of WebSEM will be illustrated using the
growth curve model.
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Registration

◦ URL: https://websem.psychstat.org

◦ Registration is required except for some WebSEM apps so that

. A user can save and retrieve analysis online.

. A user can share analysis with others.

. A user’s data can be protected.

. The abuse of WebSEM can be avoided.

. Users can better communicate with each other.

◦ Registration information is verified manually and can be turned
down if no sufficient information is provided.

◦ After registration, one can log in to use WebSEM.
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Use WebSEM

◦ Build a path diagram directly

. Click the Path Diagram button.

. The data feature

◦ Generate a path diagram using equations

. The Diagram It button.

◦ Save the path diagram

◦ Edit a path diagram

◦ Run the analysis

◦ Read the output
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Examples

◦ Robust Cronbach’s alpha and McDonald’s Omega http://
www.youtube.com/watch?v=rdj1x_N3Rp4

◦ Robust growth curve analysis https://www.youtube.com/
watch?v=GaRk3PmrBDo
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◦ Mediation analysis using bootstrap https://www.youtube.
com/watch?v=lbAsPum98DY
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◦ Multiple group analysis https://www.youtube.com/watch?
v=kLLNri-THy0
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An incomplete list of WebSEM features

◦ Drawing path diagrams

. Interactive drawing

. Generate from equations

. Generate from dot (graphviz) file

. Save, export, and edit

◦ SEM analysis through rsem and Lavaan

. Missing data and non-normal data simultaneously

. Automatic bootstrap

. Categorical SEM

. Multiple group analysis
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. Mediation analysis

◦ Other features

. Sharing

. WebDav

. SPSS-like interface for simple data analysis and graphs

. Edit and run R online

. Edit and run LATEX online

. Wiki and Questions & Answers
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Road map

◦ Robust multiple group analysis

◦ Robust categorical data analysis

◦ Scalable vector graphs

◦ Separated web server, storage server, and computing server

◦ Incorporation of dropbox, google drive, etc
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Q & A

◦ For more information: https://websem.psychstat.org/
wiki/workshop/index

◦ We appreciate any form of feedback.

. https://websem.psychstat.org/wiki/workshop/feedback

. Contact: Zhiyong Zhang (zzhang4@nd.edu); Ke-Hai Yuan
(kyuan@nd.edu).

◦ Thanks to Institute for Scholarship in the Liberal Arts, Center
for Creative Computing, and Center for Research Computing
at the University of Notre Dame for support.
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